If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-32=0
a = 7; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·7·(-32)
Δ = 896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{896}=\sqrt{64*14}=\sqrt{64}*\sqrt{14}=8\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{14}}{2*7}=\frac{0-8\sqrt{14}}{14} =-\frac{8\sqrt{14}}{14} =-\frac{4\sqrt{14}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{14}}{2*7}=\frac{0+8\sqrt{14}}{14} =\frac{8\sqrt{14}}{14} =\frac{4\sqrt{14}}{7} $
| x=30+10x | | x=4x+0 | | 30x-24=31x-31 | | 30x=31x-7 | | p+21+p-8=4 | | p+12+p-7=6 | | p+15+p-4=3 | | p+15+p-4=2 | | 39=6x+5x+17 | | 140+23x+2=180 | | 12+h-17+h=30 | | 11+h-11+h=21 | | x2+2x+1=49 | | -2x+x=1.6 | | 10-t+15-t=16 | | 20-t+16-t=26 | | (4m÷5)-(2m÷3)=1 | | 17+m+16+m=3 | | 15+m+15+m=2 | | d-1/3-d-2/4=1 | | -2x+x=8/5 | | -x=1,6 | | 9=-3r/8 | | x=2x+8/5 | | 8x2+x−3=0 | | 8x2+x−3=08x2+x-3=0 | | 5+20x=1-9x | | 5-15x+3=0 | | 5x-16+12=0 | | 5x+6.2=4 | | 4/d=5/3 | | 8a-6-7a=-7+2 |